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The era of applied genomic medicine is quickly approaching accompanied by the 
increasing availability of detailed genetic information. Understanding the genetic etiology 
behind complex, multi-gene diseases remains an important challenge. In order to uncover 
the putative genetic etiology of complex diseases, we designed a method that explores the 
relationships between two major terminological and ontological resources: the Unified 
Medical Language System (UMLS) and the Gene Ontology (GO). The UMLS has a 
mainly clinical emphasis; Gene Ontology has become the standard for biological 
annotations of genes and gene products. Using statistical and semantic relationships 
within and between the two resources, we are able to infer relationships between disease 
concepts in the UMLS and gene products annotated using GO and its associated 
databases. We validated our inferences by comparing them to the known gene-disease 
relationships, as defined in the Online Mendelian Inheritance in Man’s morbidmap 
(OMIM). The proof-of-concept methods presented here are unique in that they bypass the 
ambiguity of the direct extraction of gene or disease term from MEDLINE. Additionally, 
our methods provide direct links to clinically significant diseases through established 
terminologies or ontologies. The preliminary results presented here indicate the potential 
utility of exploiting the existing, manually curated relationships in biomedical resources 
as a tool for the discovery of potentially valuable new gene-disease relationships.  

The GenesTrace system may be accessed at the following URL: 

http://phene.cpmc.columbia.edu:8080/genesTrace/index.jsp 
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1. Introduction 

Much of biological hypothesis generation follows the proverbial model of trying 
to discover the “golden needle in the haystack.” Discovering significant genes is 
becoming a daunting task as various genome projects are creating sequence data 
information at accelerating rates. Thus, it is quickly becoming an intractable 
problem for the biomedical scientist to stay abreast all putative genes that may 
hold hidden keys toward the understanding of disease. Barring exhaustive wet-
lab and in vivo experimentation, the use of knowledge bases may offer some 
insight to this task. Novel bioinformatic methods are required to elucidate 
putative genes that may be related to the etiology of disease. We describe one 
such method that may offer such insight using relationships that exist within and 
among terminologies and ontologies of biomedical knowledge. 

The emergence of the Gene Ontology™ (GO) [1] and its related databases 
is an important advance in discovering elusive gene-disease relationships, as it 
provides a standardized, easily searchable repository of biological information. 
A great deal of research is focused on developing or improving methods for 
gene and sequence annotation (see below); however, relatively little research has 
looked at the equally, if not more, complex idea of relating GO to the level of 
clinical diseases. This project attempts to bridge that gap by exploring links 
between GO and its annotation databases to clinical concepts that are in the 
Unified Medical Language System® (UMLS®) [2]. Ultimately, this research 
aims to highlight possible gene-disease relationships via the mappings of 
structured terminologies (both clinical and biological) contained in the UMLS. 

A large amount of biomedical knowledge is represented in free-text form, 
such as MEDLINE abstracts. Extracting important information from these 
resources is an extremely active area of research. PubGene, for example, is a 
database for gene-expression analysis, extracted from a weighted network of 
gene co-occurrence data in MEDLINE [3]. PubGene’s gene-gene relationships 
were validated by comparison with the Online Mendelian Inheritance in Man 
(OMIM) database [4]. The utility of literature associations were also validated 
by a comparison to microarray data [3]. The authors noted problems with the 
ambiguity of gene names and symbols while creating the PubGene network. 
Additionally, the network did not attempt to characterize the relationships 
represented in the co-occurrence network. 

Fuzzy set theory has also been used as an attempt to characterize candidate 
disease genes. This approach exploits relationships between two types of 
annotations, MeSH headings for MEDLINE articles and GO terms for protein 
sequences. The goal of two methods based on fuzzy set theory is to “derive 
relationships between pathological conditions and terms describing protein 
function.” [5,6] The evaluation of one system showed an association between 
the authors’ scoring system and the likelihood of a gene-disease association [5]. 



 

Similarly, the creators of the MedGene database looked at co-occurrences 
between genes and MeSH disease terms, and then using those relationships, 
analyzed microarray data [6]. 

Several groups have also looked at various automated methods for 
annotating genes and protein sequences with gene ontology functions. The Gene 
Ontology Annotation (GOA) project uses manual mappings between GO terms 
and either protein domains or SWISS-PROT keywords to automatically assign 
GO terms to a sequence containing previously annotated domains [7]. 
Raychaudhuri et al. [8] used statistical document classification methods to 
analyze abstracts from the medical literature. From this analysis, they were able 
to associate a set of GO terms to the genes mentioned in the abstracts. Building 
on their previous work [5], Perez et al. [9] developed a system to associate 
keywords to genes or protein sequences using mappings between SWISS-PROT 
keywords, MESH terms associated with MEDLINE abstracts, and GO terms. 
Their system demonstrated better performance with mapping SWISS-PROT 
terms that GO terms. The difference was attributed to the ambiguity introduced 
into GO mappings by its ontological structure. 

Here, we describe a novel method that builds on previous attempts at 
bridging biomedical terminologies to infer putative genes implicated in disease 
etiology. Our method, GenesTrace, uses biological and clinical terminologies 
contained in the UMLS to induce modal relationships. We hypothesize that this 
putative phenomic network can further be filtered and mined to reveal buried 
knowledge. The method we propose is fundamentally different from previously 
cited ones. For example, instead of using fuzzy logic or statistical methods, our 
proposed method infers genes-to-diseases relationships by constructing an 
original network of relationships between curated ontologies and databases and 
then selecting paths in the network, which fulfill valid semantic constraints. 
From this proof-of-concept study, we will further describe how GenesTrace’s 
inferences may provide some guidance towards subsequent investigations of the 
genetic etiology of complex diseases.  

2. Methods 

2.1. Materials 

UMLS Database. We used the 2003AB version of the UMLS Metathesaurus®, 
which contains approximately 900,000 concepts from 102 biomedical source  



 

 

Figure 1: Gene-Disease Mapping. Gene Terms from Genetic Knowledge Bases, such as MGI, 
LocusLink, or Flybase, are codified using genetic terminologies, such as GO (left). Disease Terms 
from Clinical Knowledge Bases, such as DXplain, QMR, or Iliad, are codified using clinical 
terminologies, such as SNOMED (right). Collectively, these terminologies are mapped as concepts 
in a hierarchical manner, as in the UMLS (center). Manually curated knowledge databases, like 
OMIM, map some gene product concepts with disease concepts (bold dashed line). The proposed 
method, GenesTrace, exploits terminology mappings, which relate disease concepts to gene concepts 
(bold solid line). 
 
terminologies2. Many of these source terminologies have a strictly clinical focus. 
No single terminology in UMLS 2003AB is as specific to molecular biology as 
GO. With the inclusion of GO, the UMLS spans all the various knowledge 
representation levels of structural and functional concepts in biomedicine – as 
previously conceptualized by Blois – from molecular information to clinical and 
disease terms [10]. 

In the process of integrating GO into the UMLS, many GO terms became 
new concepts. In many instances, however, related concepts already existed in 
the Metathesaurus, to which these new concepts were not necessarily linked by 
explicit relationships. When appropriate, we mapped the new GO concepts to 
their existing relatives. We also used a table, as supplied by one of the authors, 
of gene products in the GO databases that were directly represented in the 
UMLS as an alternate target for disease relationships. Our mappings and 
inferences were based on the April 2003 distribution of GO [1] and its 
associated databases. The GO databases include genes and gene products and 
their associated GO terms, which are represented in a number of important 
biological databases. We searched four model organism databases (fly, yeast, 
worm, mouse) and used SwissProt-TREMBL for human genes and products. 
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OMIM Database. The Online Mendelian Inheritance in Man database 
(OMIM) was used as the gold standard for our validation steps. OMIM contains 
over 14,000 detailed free-text entries about human genes and genetic disorders 
[4]. Additionally, OMIM provides morbidmap, which gives “the chromosomal 
location, gene symbol, method(s) of mapping, and disorder(s) related to the 
specific gene [4],” as well as specific mutations of identified genes. In this 
study, we used the April 2003 versions of OMIM and its morbidmap. 

2.2. General Steps of the GenesTrace Method 

The proposed method, GenesTrace, reveals relationships (traces) between a 
disease and a gene according to the following three-step process: (see Figure 1).  

1. Identify a Disease that exists in the UMLS as a concept;  

2. Determine Relationships between a UMLS disease and other UMLS 
concepts, such as those in biological terminologies such as GO, using both 
the symbolic relationships (hierarchical and associative) and the statistical 
relationships (co-occurrence information);  

3.  Identify Putative Genes that use these related concepts and then use the 
terminology to determine the list of putative genes through links to valuable 
knowledge contained in biological databases (e.g., FlyBase, WormBase, 
MGI, etc.). 

2.3. Inferring Gene-to-Disease Relationships  

To take advantage of the knowledge resources presented by the UMLS, GO, and 
GO’s associated databases (hereafter referred to as “GODB”), we developed a 
series of methods that related clinical concepts of disease, represented in the 
UMLS, to gene products represented in GODB.  

The first step in our analysis was to select the set of source concepts in the 
UMLS. We were able to take advantage of a previously described method that 
transforms UMLS’s full graph organization in a directed acyclic graph to obtain 
all entries that were descendants of the concept “disease” (C0012634), which led 
to a data set of approximately 200,000 concepts [11]. For each “disease” concept 
in this list, we then obtained a set of related concepts, using two knowledge 
source tables from the UMLS: MRREL and MRCOC. MRREL consists of 
semantically related concepts; MRCOC contains co-occurences between 
concepts in MEDLINE. We set a minimum threshold of five co-occurrences in 
MEDLINE as represented in MRCOC to be considered as a significant entry.  

Next, we obtained the subset of the related concepts that were represented 
in GO. We used two sources: the GO terms already represented officially as 
concepts in the UMLS and the set of experimental mappings of gene products to 



 

UMLS concepts. In order to provide the most inclusive set of results, we used all 
relevant concepts for GO terms, since there was some overlap among the new, 
GO-specific concepts and previous concepts (i.e. “acetylcholinesterase”, 
C0001044 and “acetylcholinesterase activity” [from GO], C1149827). Once a 
merged set of relevant GO terms was established, we systematically obtained the 
gene products that were associated with each GO term from the GO databases. 
This was done using SQL queries based on the Perl GO Application 
Programming Interface. Valid gene-to-disease relationships were then inferred 
by extracting associations supported by the highest levels of evidence in GO, 
IDA (Inferred from Direct Assay), and TAS (Traceable Author Statement). 

 From the results of each disease-specific query, we created a database 
wherein each row contained a disease concept, the concept related to the disease 
and to a GO term, the GO term and accession number represented by the related 
concept, and additional descriptive information for each gene product (i.e., gene 
name, gene unique identifier, source database). We also noted the source of the 
relationship, which was either statistical (co-occurrence), semantic, or both. For 
semantic relationships, we noted the type(s) of relationship represented (i.e., 
parent, sibling, etc.)  

A second method consisted in finding concepts that were gene products 
related to the “disease” concepts. For the gene products that were directly 
represented in the UMLS, according to the experimental mapping mentioned 
above, we incorporated similar relevant information (e.g., the disease concept, 
the related concept, the GO product represented by the related concept, gene 
name, unique identifier, and source database).  

2.4. Evaluation 

We created a sub-table in our database consisting of the concepts corresponding 
to OMIM diseases represented in the UMLS. These concepts were obtained 
using string matching (both exact and normalized) with semantic checking, 
between entries in “omim.txt” and the set of UMLS concepts. 

Gold Standard. Next, we compared – using lexico-semantic mapping 
techniques – the set of genes listed in each disease’s OMIM morbidmap entry to 
the set of corresponding genes and gene products that had been associated with 
the disease in our database. We then tabulated the number of genes associated 
with each disease. True Positives (TP) were defined as instances where the gene 
was associated with a concept it is related to in OMIM’s morbidmap. False 
Positives (FP) were defined as instances where the gene was associated with any 
other concept. False Negatives (FN) were instances where genes that were 
known to be associated with a disease were not retrieved using GenesTrace. The 



 

precision and recall of our system was measured as TP/(TP+FP), and 
TP/(TP+FN), respectively. 

3. Results 

3.1. Sample Trace 

The genes trace for UMLS concept C0002395, “Alzheimer’s Disease”, is 
presented here as an illustrative example of a GenesTrace and its efficacy using 
OMIM’s morbidmap. From the UMLS, we retrieved 128 distinct concepts 
related to Alzheimer’s Disease using MRREL. An additional 993 concepts were 
retrieved from MRCOC. The relationships from MRREL were divided among 
seven semantic classes. Mapping these concepts to the GO database led to 102 
distinct GO terms: 62 were found in the molecular function axis, 25 in the 
biological process axis, and 16 in the cellular component access. From GO, 
GenesTrace found 102 associated GO terms annotating 10,774 distinct 
molecular products. For this specific trace, we noted that all of the associations 
were the results of relationships in MRCOC. Of the 12 genes associated with 
Alzheimer’s disease found in OMIM’s morbidmap, GenesTrace returned 3; 
however, only 6 of the 12 genes from OMIM’s morbidmap were represented in 
the GODB. 242 other genes were also associated with this source concept.  Thus 
we assessed the number of TP to be 3; FN to be 3, and FP to be 242, giving a 
precision of 1.2%, and a recall (sensitivity) of 50% Of note, this is close to the 
lowest value of precision in our range of results.  

3.2. Validation 

Out of the 200,000 disease concepts in the UMLS Metathesaurus, 1,407 were 
associated with at least one associated GO term. We found at least one gene in 
the database related to 142 of the 1,407 disease concepts. Globally, we retrieved 
124 distinct genes in the context of being related to their specific disease 
concept, and 290 distinct genes erroneously associated with concepts, for a 
precision of 30% and recall of 8.8%.  Overall, there were an average of 3.1 gene 
products per disease concept in this dataset (range 1-30; 89% had 1-3 genes). Of 
note, only 978 of the genes in OMIM’s morbidmap existed in the GO databases. 
For specific diseases, our system had a wide range of precision and recall, from 
100% each (1 TP, no FP’s or FN’s) for several diseases (Multiple Endocrine 
Neoplasia type 1, Neurofibromatosis type 2), to a precision of 1% with a recall 
of 100% (Ovarian Tumors), to a precision of 100% with a recall of 50% (Hurler 
Syndrome, Familial Hypobetalipoproteinemia). Figure 2 shows the distribution  
 



 

 

Figure 2: Distribution of Precision and Recall Values. All values, 
including overlapping points, shown for retrieving pertinent genes for 
diseases contained in OMIM.  

of the precision and recall for all the diseases examined. Interestingly, almost 
30% of diseases have a precision and recall of 100%. Overall, average precision 
for diseases was 51%, with an average recall of 79%.  Two cases are illustrative 
of the complexity of the results. The results for Alzheimer’s Disease, mentioned 
above, are typical of results for complex diseases. Of note, among the gene 
products were ACE, ACE1, and PSEN2, all of which were related to 
Alzheimer’s Disease in OMIM’s morbidmap. On the other end of the spectrum, 
for concept C0027832, “Neurofibromatosis 2”, we retrieved only 2 gene 
products, GOT1 and NF2; however, as NF2 is the only related gene in 
morbidmap this led to a precision and recall of 100%.  

3.3. GO-UMLS-OMIM Specific Results 

The results of our gene-disease mappings also revealed some interesting 
properties of the relationship between GO and the UMLS. As shown in Tables 1 
to 4, GenesTrace found different types of relationships between either GO terms 
and UMLS diseases. While few GO terms are associated with 100 diseases or 
more, 75% of them are linked to 8 diseases or less (Table 1). Similarly, 60% of 
the diseases are associated with only one GO term, but 116 diseases are linked 
to 10 GO terms or more (Table 2). Similar findings were observed between gene 
products and diseases. While 23 gene products are associated with 200 diseases 
or more, 75% of them are linked to 25 diseases or less (Table 3). Similarly, 80 
diseases are associated with more than 1000 gene products, but most diseases 
are linked to at most 100 gene products (Table 4). 
 



 

Table 1: Percentage of GO Terms 
associated with individual diseases. 

 Table 2: Percentage of individual diseases 
associated with individual GO terms 

GO Terms (%) Disease(s)  Diseases (%) GO Term(s) 
1-25 1  1-25 1 
26-50 1-3  26-50 1 
51-75 3-8  51-75 1-2 
76-100 8-132  76-100 2-102     
Table 3: Percentage of Gene Products 
associated with individual diseases. 

 Table 4: Percentage of individual 
diseases associated with gene products. 

Gene Products (%) Disease(s)  Diseases (%) Gene Product(s) 
1-25 1-3  1-25 1-4 
26-50 3-13  26-50 4-15 
51-75 13-25  51-75 15-70 
76-100 25-331  76-100 70-10,774 

4. Discussion 

Our methods expand on those of other authors in several ways. Perhaps most 
importantly, we bypass the ambiguity involved in extracting gene names or 
symbols directly from MEDLINE articles by using pre-defined concepts in the 
UMLS and GO. Additionally, we use more robust statistical (co-occurrence) 
data than direct extraction from MEDLINE. Our methods use co-occurrence 
data that it is calculated on the conceptual, rather than textual, level. In addition 
to imposing a minimum threshold on the frequency of co-occurrence, the quality 
of the associations selected is ensured in part by the fact that co-occurrences 
recorded in the Metathesaurus are limited to the "starred" (major) MeSH 
descriptors in MEDLINE. Since we also use manually-curated semantic 
relationships extracted from the UMLS, the characteristics of the relationships 
we use are also richer than pure co-occurrence data. GenesTrace leverages the 
above annotation methods and their results, in order to exploit the knowledge 
contained in GO, the GO annotation databases, and the UMLS. In doing so, the 
purpose of GenesTrace can be seen in parallel to the annotation projects 
mentioned above; instead of annotating sequences, however, GenesTrace 
provides automated methods of annotating diseases.  

Inherently, using the UMLS and GO as knowledge sources produces a very 
large search space. Of the approximately 200,000 initial concepts from the 
UMLS, for example, 22,040 (11%) had at least one corresponding entry in the 
GO database. The entire GenesTrace database was comprised of approximately  
3 million rows, with 1,326 distinct GO terms and 16,984 distinct gene products, 
with an average of 129 products for each disease entry. Theoretically, there 
would be a maximum of approximately 21.5 million gene-disease combinations 
in the OMIM sub-table of the database, considering the 15,294 distinct gene 
products and 1,407 distinct diseases represented there. Our methods 
significantly reduce the combinatorial space for these gene-disease relationships, 



 

(i.e., 688,126 rows in the OMIM sub-table) however, by more than an order of 
magnitude, and therefore provide a more efficient starting point for high-
throughput analysis of the complicated genetic interactions underlying complex 
diseases. 

Our results not only reveal the potential utility for the GenesTrace system, 
but also point to the limitations of the process. The success of the traces is 
heavily based on the quality and accuracy of annotation for the corresponding 
gene products [7]. Indeed, the precision and recall values reported in this study 
may be affected by varying annotations for homologous genes across multiple 
organisms. Perhaps the most significant current limitation, however, is the need 
for filtering of results for complex diseases, such as the almost 11,000 gene 
products retrieved for Alzheimer’s Disease. Investigating the most commonly 
occurring gene products within the set is the most basic approach, but due to the 
likely low signal-to-noise ratio (e.g., 3 of the top 4 products for the Alzheimer 
disease query (Aryl Hydrocarbon Receptor; Uracil-DNA Glycosylase; and E2F-
1 transcription factor) are involved in neuronal development or apoptosis, but 
are not specifically implicated in Alzheimer’s disease), other methods would 
need to be applied. Further complicating methods such as ours is the lack of 
uniformity in gene names or gene product representation, as evidenced by the 
relatively small number of genes in OMIM’s morbidmap also present in the GO 
databases.  

Several factors also explain our relatively wide-ranging values for precision 
and recall. As mentioned above, one of the major reasons may be, the lack of 
uniform naming of genes. This was particularly evident in mappings between 
morbidmap and the GODB. For example, morbidmap has entries for both VRNF 
and NF1, which are the same gene, while only NF1 is in the GODB. 
Additionally, even with the sub-table of OMIM diseases, the large search space 
of genes and gene products makes false positives much more likely.  Due to the 
limitations of gene annotations, another possibility is that a set of our FP’s are 
not easily verified FP’s, but instead have “buried or undiscovered” relationships 
to the diseases. For example, of the 242 genes returned as FP’s for Alzheimer’s 
disease, 97 return at least one entry in a PubMed search for “[gene] AND 
dementia”, where ‘[gene]’ is the query gene symbol, and thus may represent 
examples of previously discovered, yet buried, knowledge. In this case, buried 
would indicate that the relationship is difficult to retrieve in high throughput, as 
it is not explicitly annotated in either OMIM or PubMed. However, besides 
these examples, other inferred relationships may be undiscovered altogether. 
Similarly, of the 129 FP’s for hepatocellular carcinoma, 69 return at least one 
article (buried knowledge) for a search on “[gene] AND hepatoma”, where 
‘[gene]’ is the query gene symbol. 



 

This study has several limitations. We did not exploit the graph structure of 
the knowledge sources we used. Nor did we contrast putative results as “buried” 
(if found in PubMed) and “undiscovered” (if not found in PubMed). 
Appreciation of the graph structure would have enabled us to modify our results 
based on recursively navigating up or down levels of MRREL, MRCOC, MeSH 
or GO. We intend to investigate the recursive use of the relationships to expand 
the database. An additional relevant study that we have initiated is to use 
statistical comparisons to compare groups of genes mapped to diseases. For 
instance, housekeeping genes are likely to be associated non-specifically with a 
large number of diseases. The top five products in terms of frequency, for 
example, consisted of two stress response genes (SKN7, SKI1), two transcription 
regulators (HNT1, E2F1) and one metabolic regulator (IATP). Future work will 
include the usage of established information retrieval weighting techniques to 
stratify results such as term frequency * inverse document frequency (TF*IDF).  

The strengths of the GenesTrace system stems from its ability to combine 
several sources of manually curated information into a high-throughput system 
for gene discovery. Additionally, very few systems provide genome-wide 
approaches to phenotypic discovery, and tools, such as GenesTrace, are 
foundational steps to comprehend the phenome as they provide an incremental 
discovery path using established knowledge bases. Furthermore, GenesTrace 
performs searches based both on semantic and statistical information, and has 
the ability to exploit the ontological properties of the source materials. The 
system is also easy to update, as the source materials are updated either quarterly 
or monthly. Finally, though the system explores direct, clinically diverse gene-
disease relationships, providing a high-level view, it is also expandable to 
virtually any source annotated by GO, down to the sequence level, as well as 
any source incorporated into the UMLS, such as SNOMED CT. 

5. Conclusion 

The GenesTrace methodology presented here is a proof-of-concept study that 
mines gene-disease relationships across biomedical databases. By design, the 
prototypal method was unfiltered. Consequently, while the results of this study 
provide sufficient accuracy that attests to the validity of the GenesTrace 
principle, it yet remains inadequate for active use by researchers. However, as 
the work progresses in planned complementary studies, we expect the methods 
presented here to have potential for significant accuracy improvements, which 
may yield a powerful tool for research and discovery. Specific future studies 
will include machine learning or filtering metrics such as the frequency of co-



 

occurrences of the intermediating knowledge, and convergence of distinct gene-
disease traces (“knowledge pathways”). 

Understanding the genetics behind complex diseases is one of the principal 
goals of genomics research. Many complex genetic phenomena are encoded in 
biological knowledge bases. Similarly, many clinical manifestations of disease 
are represented in clinical knowledge bases. Multiple levels of both explicit and 
implicit pathophysiologic and phenomic knowledge may be buried in mappings 
across mappings between clinical and biological knowledge bases. By 
examining these mappings, one can envisage automated systems, like 
GenesTrace, that may help elucidate testable genetic hypotheses by tracing the 
links between these clinical and biological knowledge bases. 
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